First Semester B.E. Degree Examination, Dec.2016/Jan. 2017
Engineering Mathematics - I
Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least two from each part.

PART - A

1 a. Choose the correct answers for the following :
(04 Marks)
Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining hank pages.
i) If $y=\frac{1}{2 x+1}$ then the $10^{\text {th }}$ derivative of y is
A) $\frac{2^{10} 10!}{(-2 x+1)^{11}}$
B) $\frac{2^{10} 10!}{(2 x+1)^{11}}$
C) $\frac{2^{10} 10!}{(2 x-1)^{11}}$
D) $\frac{2^{10} 10!}{(2 x+1)^{-11}}$
ii) If $y=\sin 2 x$ then y_{n} is
A) $2^{n} \sin \left(2 x+\frac{n \pi}{2}\right)$
B) $2^{n} \cos \left(2 x+\frac{n \pi}{2}\right)$
C) $2^{n} \sin \left(2 x-\frac{n \pi}{2}\right)$
D) none of these
iii) If $f(x)$ is continuous in [a, b], differentiable in (a, b) and $f(a)=f(b)$, then there exist atleast one point $c \in(a, b)$ such that $f^{\prime}(c)$ is equal to
A) 0
B) -1
C) $\frac{f(b)-f(a)}{b-a}$
D) $\frac{f(b)-f(a)}{a-b}$
iv) Maclaurin's series expansion of e^{x} is
A) $1+2 x+\frac{x^{2}}{2}+\ldots$.
B) $1+x+\frac{x^{2}}{2}+$
C) $1-2 x+\frac{x^{2}}{2}-\ldots$
D) $1-x+\frac{x^{2}}{2}-\ldots$
b. If $\cos ^{-1}\left(\frac{y}{b}\right)=\log \left(\frac{x}{n}\right)^{p}$, prove that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+p^{2}\right) y_{n}=0$.
(06 Marks)
c. State Rolle's theorem and verify the theorem for the function $f(x)=\log \left(\frac{x^{2}+a b}{x(a+b)}\right)$ in $[a, b]$, $b>a>0$.
(05 Marks)
d. Find the Maclaurin's series expansion of $\log \left(1+\mathrm{e}^{\mathrm{x}}\right)$ upto the term containing x^{4}.

2 a. Choose the correct answers for the following :
(04 Marks)
i) The value of $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}$ is
A) $\log \left(\frac{b}{a}\right)$
B) $\log \left(\frac{a}{b}\right)$
C) $\log (a-b)$
D) 1
ii) Angle between radius vector and tangent to the curve $r=a \sin \theta$ is
A) θ
B) $-\theta$
C) $\frac{\pi}{2}-\theta$
D) $\frac{\pi}{2}+\theta$
iii) The radius of curvature of any point on the curve $x=a \cos \theta$ and $y=a \sin \theta$ is
A) $a \sin \theta$
B) θ
C) $\frac{\theta}{2}$
D) a
iv) The derivative of arc length $\frac{d s}{d \theta}$ for the polar curve $r=f(\theta)$ is
A) $\sqrt{r^{2}+\frac{d^{2} r}{d \theta^{2}}}$
B) $\sqrt{r+\left(\frac{d r}{d \theta}\right)^{2}}$
C) $\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}$
D) $\sqrt{r^{2}+\left(\frac{d \theta}{d r}\right)^{2}}$
b. Evaluate the following:
i) $\lim _{x \rightarrow 0}(1+x)^{1 / x}$
ii) $\lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x}$
(06 Marks)
c. For the curve $y=\frac{a x}{a+x}$, if ρ is the radius of curvature at any point (x, y), show that $\left(\frac{2 \rho}{a}\right)^{\frac{2}{3}}=\left(\frac{y}{x}\right)^{2}+\left(\frac{x}{y}\right)^{2}$.
(05 Marks)
d. Find the angle of intersection of the following pair of curves $r=a \log \theta, r=\frac{a}{\log \theta}$.
(05 Marks)
3 a. Choose the correct answers for the following :
(04 Marks)
i) If $u=a x^{2}+b y^{2}+a b x y$, then $\frac{\partial^{3} u}{\partial x^{2} \partial y}$ is
A) zero
B) $a+b+a b$
C) $a b$
D) none of these
ii) If $u=x^{4} y^{5}$, where $x=t^{2}$ and $y=t^{3}$, then $\frac{d u}{d t}$ is
A) $22 \mathrm{t}^{23}$
B) $20 t^{19}$
C) $9 t^{8}$
D) $23 \mathrm{t}^{22}$
iii) If $x=r \cos \theta$ and $y=r \sin \theta$ then $\frac{\partial(x, y)}{\partial(r, \theta)}$ is
A) $r^{2} \sin 2 \theta$
B) r^{2}
C) r
D) $r \sin 2 \theta$
iv) The necessary condition for $u=f(x, y)$ to be extremal is
A) $u_{x} \neq 0, u_{y} \neq 0$
B) $u_{x}=0, u_{y}=0$
C) $u_{x}>0, u_{y}>0$
D) $\mathrm{u}_{\mathrm{x}}<0, \mathrm{u}_{\mathrm{y}}<0$
b. If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z, w=2 z^{2}-x y$, prove that $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1,-1,0)$ is 20 .
(06 Marks)
c. If $z=\cos (x+a y)+\sin (x-a y)$ prove that $\frac{\partial^{2} z}{\partial y^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$.
(05 Marks)
d. The deflection at the centre of a rod of length ℓ and diameter d, supported at its ends and located at the centre a weight w, which varies as $w l^{3} d^{-4}$. Determine the percentage increase in w, l and d of 5, 4 and 3 respectively.
(05 Marks)
4 a. Choose the correct answers for the following :
(04 Marks)
i) If $\overrightarrow{\mathrm{F}}=3 x^{2} \hat{\mathrm{i}}-x y \hat{j}+(a-3) x z \hat{k}$ is solenoidal, then a is
A) 0
B) -2
C) 2
D) 3
ii) If $\vec{A}=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$, then curl \vec{A} is given by
A) $2 x \hat{i}+2 y \hat{j}+2 z \hat{k}$
B) 0
C) $\frac{x \hat{i}+y \hat{j}+z \hat{k}}{2}$
D) $2 x+2 y+2 z$
iii) If $\phi=x y+y z+z x$, then $\operatorname{grad} \phi$ at $(1,1,1)$ is
A) $2 \hat{i}+2 \hat{j}+2 \hat{k}$
B) 0
C) $\hat{i}+\hat{j}+\hat{k}$
D) $3 \hat{i}+3 \hat{j}+3 \hat{k}$
iv) The gradient of a scalar field is a
A) vector
B) scalar
C) constant
D) none of these
b. If $\vec{F}=(x+y+z) \hat{i}+\hat{j}-(x+y) \hat{k}$ then show that $\vec{F} \cdot \operatorname{curl} \overrightarrow{\mathrm{~F}}=0$.
c. If $\overrightarrow{\mathrm{F}}=\nabla\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$ then prove that $\overrightarrow{\mathrm{F}}$ is irrotational.
d. Derive an expression for div $\overrightarrow{\mathrm{F}}$ in orthogonal curvilinear coordinates.

PART - B

5 a. Choose the correct answers for the following :
(04 Marks)
i) The Leibnitz's rule for differentiation under the integral sign is
A) $\phi^{\prime}(y)=\int_{a}^{b} \frac{\partial}{\partial y}[f(x, y)] d x$
B) $\phi^{\prime}(y)=\int_{a}^{b} \frac{\partial}{\partial x \partial \hat{\partial} y}[f(x, y)] d x$
C) $\phi(y)=\int_{a}^{b} \frac{\partial}{\partial \mathrm{x}}[\mathrm{f}(\mathrm{x}, \mathrm{y})] \mathrm{dx}$
D) none of these
ii) The value of $\int_{0}^{\pi / 2} \sin ^{6} x d x$ is
A) $\frac{5 \pi}{8}$
B) $\frac{5 \pi}{64}$
C) $\frac{5 \pi}{32}$
D) $\frac{5 \pi}{16}$
iii) The value of $\int_{0}^{\pi} \sin ^{5} x \cos ^{5} x d x$ is
A) $\frac{1}{90}$
B) $\frac{1}{60}$
C) $\frac{1}{30}$
D) $\frac{1}{70}$
iv) Surface area of a solid of revolution of the curve $y=f(x)$, if rotated about x-axis is
A) $\int_{v=a}^{b} 2 \pi y d x$
B) $\int_{x=a}^{b} 2 \pi x d y$
C) $\int_{i=a}^{b} 2 \pi y d s$
D) $\int_{x=a}^{b} 2 \pi x d s$
b. Using the rule of differentiation under the integral sign, evaluate $\int_{0}^{\pi} \frac{\log (1+\alpha \cos x)}{\cos x} d x$.
(06 Marks)
c. Obtain the reduction formula for $\int_{0}^{\pi / 2} \cos ^{\pi} x d x$
d. Find the area of the Cardioid $\mathrm{r}=\mathrm{a}(1+\cos \theta)$
(05 Marks)
6 a. Choose the correct answers for the following :
(04 Marks)
i) The solution of $\frac{d y}{d x}+\frac{y}{x}=0$ is
A) $\frac{y}{x}=c$
B) $\frac{x}{y}=c$
C) $x-y=c$
D) $x y=c$
ii) The orthogonal trajectory of the family of lines $y=a x$ is
A) $x^{2}+y^{2}=c^{2}$
B) $x^{2}-y^{2}=c^{2}$
C) $x y=c$
D) $\frac{x}{y}=c$
iii) The solution of the differential equation $\frac{d y}{d x}=1+\frac{y}{x}$ is
A) $y=\log x+c$
B) $y=x \log x+c$
C) $y=x(\log x+c)$
D) none of these
iv) The general solution of the differential equation $(x-y) d x-(x-y) d y=0$ is
A) $\frac{x^{2}}{2}-y-\frac{y^{2}}{2}=c$
B) $\frac{x^{2}}{2}-y+\frac{y^{2}}{2}=c$
C) $\frac{x^{2}}{2}-y x+\frac{y^{2}}{2}=c$
D) none of these
b. Solve $\frac{d y}{d x}=\frac{y}{x+\sqrt{x y}}$.
c. Solve $x \log x \frac{d y}{d x}+y=2 \log x$.
(05 Marks)
d. Find the orthogonal trajectories of the family $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.

7 a. Choose the correct answers for the following :
i) The system of equations $\mathrm{AX}=\mathrm{B}$ is consistent if
A) $\rho(\mathrm{A})=\rho([\mathrm{A}: \mathrm{B}])$
B) $\rho(A)=\rho(B)$
C) $\rho(\mathrm{A})=\rho([\mathrm{B}: \mathrm{A}])$
D) all of these
ii) The system of equations $A X=0$ is always
A) inconsistent
B) consistent
C) both A and B
D) none of these
iii) Which of the following is in the normal form
A) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
B) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
C) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
D) all of these
iv) The rank of the matrix $\left[\begin{array}{lll}41 & 42 & 43 \\ 42 & 43 & 44 \\ 43 & 44 & 45\end{array}\right]$ is
A) 0
B) 2
C) 1
D) 3
b. Reduce the matrix $\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$ into its normal form and hence find its rank.
(06 Marks)
c. Find the value of λ such that the system $2 x-y+\lambda z=0, \quad 3 x+2 y+(\lambda-2) z=0$, $x-4 y+5 z=0$ has non-trivial solution and hence solve the system for λ.
(05 Marks)
d. Solve $x+y+z=1,4 x+3 y-z=6,3 x+5 y+3 z=4$ by Gauss Jordon method.
(05 Marks)
8 a. Choose the correct answers for the following :
(04 Marks)
i) The eigen values of the matrix A exists, if A is a
A) rectangular matrix
B) any matrix
C) null matrix
D) square matrix
ii) The eigen values of the matrix $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 5\end{array}\right]$ are
A) 1,3
B) 1,6
C) 1,5
D) 1,4
iii) Which of these is in quadratic form
A) $x^{2}+y^{2}+z^{2}-2 x y+y z-z x$
B) $x^{3}+y^{3}+z^{2}$
C) $(x-y+z)^{2}$
D) both A and C
iv) The quadratic form $\left(X^{\prime} A X\right)$ is positive definite if
A) All the eigen values of $A>0$
B) Atleast one eigen value of A is >0
C) All eigen values are >0 and atleast one eigen value is 0
D) No such condition
b. Reduce the matrix $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right]$ to diagonal form. Hence find A^{6}.
(06 Marks)
c. Show that the linear transformation $y_{1}=2 x_{1}+x_{2}+x_{3}, y_{2}=x_{1}+x_{2}+2 x_{3}, y_{3}=x_{1}-2 x_{3}$ is regular write down the inverse transformation.
(05 Marks)
d. Reduce the quadratic form $3 x^{2}-2 y^{2}-z^{2}+12 y z+8 z x-4 x y$ to canonical form and indicate its nature, rank, index and signature.
(05 Marks)

10CHE $12 / 22$

First/Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Engineering Chemistry

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing at least two from each part.

PART - A

1 a. Choose the correct answers for the following :
i) The electrode with -ve sign for its SRP acts as,
A) Anode with respect to SHE
B) Cathode with respect to SHE
C) Act as both
D) None of these.
ii) The emf of a concentration cell with $0.05 \mathrm{~m} \& 0.025 \mathrm{~m} \mathrm{AgNO}_{3}$ solution is
A) 0.178 V
B) 0.0295 V
C) 0.0178 V
D) 0.125 V
iii) For a galvanic cell with spontaneous reaction, Ecell is assigned.
A) + ve sign
B) - ve sign
C) Zero
D) None of these
iv) Example of an ion selective electrode is
A) S.H.E
B) Platinum electrode
C) Glass electrode
D) $\mathrm{Ag}-\mathrm{AgCl}$ electrode.
(04 Marks)
b. What is single electrode potential? Derive Nernst equation for the same.
c. A galvanic cell is constructed by immersing a $\mathrm{Cu} \operatorname{rod}$ in $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ solution of 0.01 M and a silver rod in AgNO_{3} solution of 0.1 M ionic concentrations. Given E^{0} of the cell is 0.46 V .
Write the cell diagram cell reaction and calculate the emf of the cell.
(04 Marks)
d. Explain the application of glass electrode in determination of pH of a solution.

2 a. Choose the correct answers for the following :
i) The electrolyte used in Zn - Air battery is
A) Aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$
B) Aqueous KOH
C) concentrate KCl
D) None of these.
ii) Which of the followings is a modern battery?
A) Zn - Air cell
B) $\mathrm{Zn}-\mathrm{MnO}_{2}$ cell
C) Lead - Acid cell
D) None.
iii) Fuel cell is an electrochemical cell, which works,
A) In absence of fuel
B) with continuous consumption of fuel
C) Without an electrolyte
D) None of these.
iv) The operation temperature of alkaline fuel cell is
A) $600^{\circ} \mathrm{C}$
B) $60-80^{\circ} \mathrm{C}$
C) $1000^{\circ} \mathrm{C}$
D) $250^{\circ} \mathrm{C}$
(04 Marks)
b. Discuss the following battery characteristics.
i) Capacity
ii) Energy efficiency
iii) Shelf life.
(06 Marks)
c. With a neat sketch, explain the construction and working of lead - Acid storage battery with discharging and recharging reactions.
(06 Marks)
d. What are fuel cells? How it differ from battery?
(04 Marks)
3 a. Choose the correct answers for the following :
i) Corrosion occurs in metal in a corrosive environment due to
A) Deposition of metal
B) Oxidation of metal
C) Reduction of metal
D) None of these.
ii) In acidic medium, the corrosion reaction ends with
A) Liberation of N_{2}
B) Absorption of O_{2}
C) Liberation of H_{2}
D) Absorption of H_{2}
iii) Coating of Zn on iron is known as
A) Galvanization
B) tinning
C) Cathodic protection
D) None of these.
iv) Water line corrosion is an example of
A) differential aeration cell
B) stress corrosion
C) Galvanic corrosion
D) None of these.
(04 Marks)
b. What is electro chemical corrosion? Discuss the electro chemical theory of corrosion by taking the iron as example.
(06 Marks)
c. Discuss the effect of the following on rate of corrosion.
i) Nature of oxide film
ii) polarization.
(06 Marks)
d. Explain the sacrificial anodic method of corrosion control.
(04 Marks)
4 a. Choose the correct answers for the following :
i) The electro chemical cell used for electroplating is
A) Fuel cell
B) Galvanic cell
C) Electrolytic cell
D) None.
ii) The decomposition potential refers to,
A) Minimum current a cell uses
B) Minimum voltage to be applied
C) Minimum concentration to be maintained
D) None of these.
iii) The reducing agent used in electroless plating of copper is
A) Formaldehyde
B) sodium hypophosphite
C) Acetic acid
D) Formic acid.
iv) Electro less plating involves the deposition
A) without the use of current
B) By using the current
C) By applying voltage and current
D) None of the above.
(04 Marks)
b. What is metal finishing? Discuss the effect of over voltage and decomposition potential on electroplating.
(06 Marks)
c. Discuss the electroplating of chromium.
(05 Marks)
d. What is electroless plating? Discuss the electroless plating of copper.

PART - B

5 a. Choose the correct answers for the following :
i) The quantity of heat evolved by the complete combustion of unit quantity of fuel in air or oxygen is
A) Calorific value
B) Enthalpy
C) Free energy
D) None.
ii) The process of breaking down of high molecular mass hydrocarbon to low molecular mass hydrocarbon is
A) Refining
B) Reforming
C) Cracking
D) None.
iii) The octane number of fuel is measure of
A) Ability to resist anti knocking
B) offers no resistance to knocking
C) Ability to resist knocking
D) None of the above.
iv) The device in which electricity is produced using solar energy is known as
A) Fuel cell
B) Voltaic cell
C) Photovoltaic cells
D) None. (04 Marks)
b. Explain the Bomb calorimetric method of the determination of the calorific value of the fuel.
(05 Marks)
c. Explain the fluidized bed catalytic cracking.
(06 Marks)
d. Calculate the G.C.V and NCV of a fuel from the following data :

Mass of fuel burnt: 0.75 g ; Mass of water taken $=1150 \mathrm{~g}$; water equivalent of colorimeter: 350 g , Increase in temp $=3.02^{\circ} \mathrm{C}$ percentage of hydrogen in fuel is 2.8 .
(05 Marks)

6 a. Choose the correct answers for the following :
i) The phase rule for heterogeneous system is
A) $\mathrm{C}=\mathrm{P}+2-\mathrm{F}$
B) $\mathrm{P}+\mathrm{F}=\mathrm{C}+2$
C) $\mathrm{C}+\mathrm{F}=\mathrm{P}+2$
D) $\mathrm{C}+\mathrm{P}=\mathrm{F}+2$
ii) The number of components in water system is
A) 1
B) 3
C) 2
D) 0
iii) The composition of an eutectic of lead and silver is
A) $5 \mathrm{~g} \mathrm{Ag} 95 \% \mathrm{pb}$
B) 1.5 g Ag 98.5 g pb
C) 2.67 g Ag 97.33 pb
b) None.
iv) Mathematical expression of Beers and Lambert's law.
A) $I_{t}=I_{o} . e^{-e c t}$
B) $I_{o}=I_{1} \cdot e^{\text {-ect }}$
C) $I_{t}=I_{0} \cdot e^{\text {ec }}$
D) $I_{t}=I_{o} . e^{E c t}$
(04 Marks)
b. Discuss the applications of phase rule to water system.
c. What is reduced phase rule? Describe the phase diagram of lead silver system.
(05 Marks)
d. Explain the conducto metric titrations.
(06 Marks)
7 a. Choose the correct answers for the following :
i) A polymer formed by direct addition of repeated monomers without elimination of bye product is
A) condensation polymer
B) Addition polymer
C) conducting polymer
D) Elastomer
ii) An example of natural polymer is
A) Plastic
B) Rubber
C) Nylon
D) P.V.C.
iii) Teflon is obtained by the polymerization of
A) Tetra fluoro ethane
B) Isoprene
C) Butadiene
D) None.
iv) Phenol formaldehyde is a
A) Thermosetting polymer
B) Thermoplastic
C) Co-polymer
D) None of these.
(04 Marks)
b. Discuss the mechanism of addition polymerization by taking ethylene as example. (05 Marks)
c. Give the synthesis, properties and uses of the followings:
i) Neoprene
ii) P.M.M.A
(06 Marks)
d. Explain the conduction mechanism in poly acetylene.
(05 Marks)

8 a. Choose the correct answers for the following :
i) The process of removing salts from sea water is called
A) Desalination
B) Sedimentation
C) Precipitation
D) None of these.
ii) A treatment involving the removal of phosphate is
A) Primary
B) Secondary
C) Tertiary
D) All of these.
iii) Permanent hardness of water is due to
A) CaCl_{2} and MgCl_{2}
B) CaCO_{3}
C) MgCO_{3}
D) None of these.
iv) Potassium chromate is used as an indicator in determination.
A) Hardness
B) alkalinity
C) Cl^{-}ions
D) Fl^{-}ions.
(04 Marks)
b. Explain the estimation of alkalinity of water.
(05 Marks)
c. Calculate COD of effluent of sample when $25 \mathrm{~cm}^{3}$ of effluents requires $8.3 \mathrm{~cm}^{3}$ of 0.001 M $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for complete oxidation.
(05 Marks)
d. Discuss the reverse osmosis method of water purification.
(06 Marks)

First/Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Engineering Physics

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

2. Physical constants: $h=6.63 \times 10^{-34} \mathrm{JS}, C=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, e=1.6 \times 10^{-19} \mathrm{C}$, $1 \mathrm{ev}=1.6 \times 10^{-19} \mathrm{~J}, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}, m_{n}=1.674 \times 10^{-27} \mathrm{~kg}, N A=6.025 \times 10^{26} / \mathrm{Kmol}$.

> PART - A

1 a. Choose the correct answers for the following :
(04 Marks)
i) The wavelength (λ) associated with a particle of mass m, moving with a velocity v is given by
A) $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
B) $\lambda=\frac{\mathrm{hv}}{\mathrm{m}}$
C) $\lambda=\frac{\mathrm{mv}}{\mathrm{h}}$
D) $\lambda=\frac{\mathrm{m}}{\mathrm{hv}}$
ii) In black body radiation spectrum, the Wein's distribution law is applicable for
A) Longer wavelength
B) Shorter wavelength
C) Entire wavelength
D) None of these
iii) If the group velocity of particle is $4.7 \times 10^{6} \mathrm{~m} / \mathrm{s}$, then its phase velocity is
A) $6 \times 10^{9} \mathrm{~m} / \mathrm{s}$
B) $4.7 \times 10^{9} \mathrm{~m} / \mathrm{s}$
C) $9.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D) $1.91 \times 10^{10} \mathrm{~m} / \mathrm{s}$
iv) Photo electric effect establishes
A) Wave nature of light
B) Particle nature of light
C) Dual nature of light
D) None of these
b. What is Planck's radiation law? Show how Wein's law and Rayleigh-Jean's law can be derived from it.
c. Describe Davisson and Germer experiment for the justification of de Broglie waves.
(06 Marks)
d. Find the energy of neutrons in eV whose de Broglie wavelength is $1 \AA$. Given the mass of neutron is $1.674 \times 10^{-27} \mathrm{~kg}$.
(04 Marks)
2 a. Choose the correct answers for the following :
(04 Marks)
i) The product of uncertainties between position and momentum is given by
A) $\Delta x \Delta p \geq$
B) $\Delta x \Delta p \geq \frac{h}{4 \pi}$
C) $\Delta x \Delta p \geq m v$
D) $\Delta x \Delta p \geq \frac{n h}{2 \pi}$
ii) The energy corresponding to the first permitted energy level is given by
A) Excited energy
B) Metastable state energy
C) Zero point energy
D) None of these
iii) The wave function is acceptance wave function if it is
A) Finite every where
B) Continuous everywhere
C) Single valued everywhere
D) All of these
iv) If the electron moves in one dimensional potential box of length 2 nm , the normalization constant is
A) $1(\mathrm{~nm})^{-1 / 2}$
B) $2(\mathrm{~nm})^{-1}$
C) $[\sqrt{2} \mathrm{~nm}]^{-1}$
D) None of these.
b. Using time independent Schrodinger wave equation obtain the expression for the normalized wave function for a particle in one dimensional potential well of infinite height.
c. Explain Heisenberg's uncertainty principle.
(04 Marks)
d. An electron is confined to a box of length $10^{-9} \mathrm{~m}$, calculate the minimum uncertainty in its velocity.
(04 Marks)

3 a. Choose the correct answers for the following :
i) The free electrons in classical free electron theory are treated as
A) Rigidly fixed lattice points
B) Liquid molecules
C) Gas molecules
D) None of these
ii) If the mobility of electrons in a metal increases, the resistivity
A) Increases
B) Decreases
C) Remains constant
D) None of these
iii) Matthiessen's rule is given by
A) $\rho=\rho_{\mathrm{ph}}-\rho_{\mathrm{i}}$
B) $\rho=\frac{\rho_{\mathrm{ph}}}{\rho_{\mathrm{i}}}$
C) $\rho=\rho_{\mathrm{ph}}+\rho_{\mathrm{i}}$
D) $\rho=\frac{\rho_{\mathrm{i}}}{\rho_{\mathrm{ph}}}$
iv) The value of Fermi function in Fermi level at $\mathrm{T} \neq 0 \mathrm{~K}$ is,
A) ZERO
B) 0.5
C) 0.75
D) 1
b. Using the classical free electron theory, derive an expression for electrical conductivity in metals.
(06 Marks)
c. Define Fermi energy and Fermi factor. Discuss the variation of Fermi factor with temperature.
(06 Marks)
d. Calculate the conductivity of sodium given $\tau_{\mathrm{m}}=2 \times 10^{-14} \mathrm{~s}$. Density of sodium is $971 \mathrm{~kg} / \mathrm{m}^{3}$, its atomic weight is 23 and has one conduction electron per atom.
(04 Marks)
4 a. Choose the correct answers for the following :
(04 Marks)
i) The electric dipole moment per unit volume is
A) Magnetization
B) Bipole moment
C) Electric polarization
D) Electric susceptibility
ii) For Ferromagnetic substances, the Curie-weiss law is
A) $\psi=\frac{C}{T}$
B) $\psi=\frac{C}{T-\theta}$
C) $\psi=\frac{T-\theta}{C}$
D) $\frac{\mathrm{C}}{\mathrm{T}+\theta}$
iii) The relation between B, M and H is
A) $\mathrm{H}=\mu_{0}(\mathrm{M}+\mathrm{B})$
B) $B=\mu_{0}(H+M)$
C) $\mathrm{M}=\mu_{0}(\mathrm{H}+\mathrm{B})$
D) None of these
iv) In the inverse piezoelectric effect
A) Ultrasonic waves are produced
B) Electromagnetic waves are produced
C) Microwaves are produced
D) None of these
b. What is internal field? Derive an expression for the internal field in the case of one dimensional array of atoms in dielectric solids.
(07 Marks)
c. Distinguish between hard and soft magnetic materials.
(05 Marks)
d. Sulphur is elemental solid dielectric whose dielectric constant is 3.4. Calculate the electronic polarizability if its density is $2.07 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and atomic weight is 32.07 .
(04 Marks)

PART - B

5 a. Choose the correct answers for the following :
(04 Marks)
i) Wavelength of LASER can be used as a standard of
A) Time
B) Temperature
C) Length
D) Angle
ii) The lifetime of atoms in meta stable state is of the order of
A) Milliseconds
B) Microseconds
C) Nanoseconds
D) Unlimited
iii) Which of these is not a LASER property?
A) Highly monochromatic
B) Highly divergent
C) Highly directional
D) Highly intense
iv) Pumping technique used in semiconductor LASER is
A) Electrical discharge
B) Forward bias
C) Optical pumping D) None of these
b. Describe the construction and working of He-Ne LASER.
(07 Marks)
c. What is holography? Explain the principle of recording of hologram with suitable diagrams.
(05 Marks)
d. The ratio of population of two energy levels is $1,059 \times 10^{-30}$. Find the wavelength of light emitted at 330 K .
(04 Marks)

6 a. Choose the correct answers for the following :
(04 Marks)
i) The NA of an optical fiber is 0.2 , when surrounded by air. The acceptance angle when it is in water of refractive index 1.33 is
A) 8.21°
B) 8.65°
C) 0.11°
D) None of these
ii) Superconductors are
A) Ferromagnetic
B) Paramagnetic
C) Anti Ferromagnetic D) Diamagnetic
iii) Below critical temperature, if the temperature of superconductor is increased, the critical field
A) Increases
B) Decreases
C) Remains constant
D) First increases, then decreases
iv) Attenuation in optical fiber is due to
A) Absorption
B) Scattering
C) Radiation loss
D) All the above
b. Discuss various types optical fibers with suitable diagrams.
c. Write a note on Maglev vehicles.
(06 Marks)
(05 Marks)
d. The refractive indices of the core and cladding of a step index fiber are 1.45 and 1.40 respectively and its core diameter is $45 \mu \mathrm{~m}$. Calculate its relative refractive index difference, V-number at wavelength 1000 nm and the number of modes.
(05 Marks)
7 a. Choose correct answers for the following :
(04 Marks)
i) The relation between atomic radius R and its lattice constant ' a ' in FCC is
A) $a=2 R$
B) $a=2 \sqrt{2} R$
C) $a=\frac{\sqrt{3}}{4} R$
D) $a=\frac{\sqrt{3}}{2} R$
ii) The coordination number in the case of BCC is
A) 6
B) 8
C) 10
D) 12
iii) A plane intercepts at $\mathrm{a}, \mathrm{b} / 2,2 \mathrm{c}$ in a simple cubic cell. The miller indices of the plane are.
A) (214)
B) (241)
C) (421)
D) (124)
iv) Brogg's equation is expressed as
A) $2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$
B) $2 \mathrm{a} \sin \theta=\mathrm{n} \lambda$
C) $2 \sin \theta=n \lambda$
D) None of these
b. What is atomic packing factor? Calculate APF in the case of BCC and FCC.
(06 Marks)
c. What are miller indices of planes? Explain how to find the muller indices of planes with an example.
(06 Marks)
d. A monochromatic X-ray beam of wavelength $1.5 \AA$ undergoes $2^{\text {nd }}$ order Bragg reflection from the plane (211) of a cubic crystal at a glancing angle of 54.38°. Calculate the lattice constant.
(04 Marks)
8 a. Choose the correct answers for the following :
(04 Marks)
i) The elastic behavior of the liquid is characterized by its
A) Young's modulus
B) Modulus of rigidity
C) Bulk modulus
D) Poisson's ratio
ii) The state of the matter around nanosize is known as
A) Liquid state
B) Plasma state
C) Mesoscopic state
D) Solid state
iii) A bulk material reduced to one dimension is called quantum
A) Dot
B) Well
C) Particle
D) Wire
iv) The frequency of ultrasonic waves is
A) $<20 \mathrm{kHz}$
B) Between 20 Hz and 20 kHz
C) $>20 \mathrm{kHz}$
D) None of these
b. What are nanomaterials? Explain any two methods of preparation of nanomaterials with neat sketches and mention any one application.
(08 Marks)
c. Describe a method of measuring velocity of ultrasonic waves in solids. Using this how can we find the rigidity modulus of the solid?
(08 Marks)

USN

10CCP13/23
First/Second Semester B.E. Degree Examination, June/July 2016 Computer Concepts and ' C ' Programming

Time: 3 hrs.
Max. Marks:100
Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Use of steam tables is not permitted.

PART - A

1 a. Choose the correct answers for the following:
(04 Marks)
i) Which of the following is not a type of computer based on individual usage?
A) Desktop computer
B) Workstation
C) Digital computer
D) Smart phone
ii) Note book computer is also called as \qquad
A) PDA's
B) Laptops
C) Smart phones
D) Tablet computer
iii) Display system in table computer can be rotated by
A) 60°
B) 120°
C) 90°
D) 180°
iv) \quad One Terabyte $=$
A) 1024 GB
B) 1024 MB
C) 1024 KB
D) 1024 bytes
b. Explain briefly the basic structure of a computer along with a block diagram. (06 Marks)
c. Explain the different types of audiovisual input devices.
(10 Marks)
2 a. Choose the correct ansivers for the following
(04 Marks)
i) The capacity of a floppy disk is \qquad
A) 2.44 MB
B) 1.44 MB
C) 2.48 MB
D) 2.48 MB
ii) Which of the following is an example of system software?
A) MS - WORD
B) Microsoft excel
C) Text editor
D) Payroll
iii) In star topology the central computer is called
A) Host
B) Source
C) Hub
D) None
iv) 1 byte = \qquad Nibbles.
A) 4
B) 2
C) 8
D) 1
b. Explain how the data is organized in magnetic disk. (04 Marks)
c. What is Operating system? Explain the types of operating system.
d. Mention the need for networking.

3 a. Choose the correct answers for the following :
i) Which of the following command is used to save the program?
A) F3
B) $\mathrm{Cntrl}+\mathrm{V}$
C) F2
D) Cntrl
ii) Which of the following is a newline character?
A) $\backslash t$
B) $\backslash f$
C) lb
D) ln
iii) format specifier converts the data into floating point value.
A) $\% \mathrm{e}$
B) $\%$ o
C) $\% \mathrm{~d}$
D) $\% u$
iv) Which input function accept the string as input from the keyboard?
A) getchar ()
B) gets ()
C) getch ()
D) getche ()
b. Explain the basic data types available in C language.
c. Explain the formatted Input and Output function with example.
(08 Marks)
4 a. Choose the correct answers for the following :
(04 Marks)
i) Which of the following operator is $\mathrm{R} \rightarrow \mathrm{L}$ associativity.
A) $<$
B) +
C)
D) $=$
ii) What is the output of the following statement printf ("\% d $\backslash n$ ", $12,345,678$)?
A) 12
B) 12
C) 12,345
D) $12,345,678$
iii) An expression with only one operand but not any operator is called
A) Primary
B) Ternary
C) unary
D) Binary
iv) If $\mathrm{i}=3, \mathrm{j}=4$, what is the value of $\mathrm{j}+1 / \mathrm{i}-1$
A) 2
B) 1
C) 4
D) 3
b. Simplify the expression $\mathrm{a}+=\mathrm{b}^{*}=\mathrm{C}-=5$, where $\mathrm{a}=1, \mathrm{~b}=3, \mathrm{c}=7$.
(04 Marks)
c. Write a C program to find the area of a triangle given the 3 sides.
(06 Marks)
d. Explain the increment and decrement operator with program.
(06 Marks)

PART - B

5 a. Choose the correct answers for the following :
(04 Marks)
i) Which of the following header file is used if we use floor () function
A) stdio.h
B) conio.h
C) math h
D) stdlib.h
ii) Which element of user defined function is not terminated by semicolon (;)
A) function prototype
B) function definition
C) function call
D) function declaration
iii) Pass by value is also called as \qquad
A) call by value
B) call by reference
C) function call
D) function declaration
iv)
A) local variable
B) global variable
C) static variable
D) register variable
b. Explain briefly the different methods of passing parameter.
(10 Marks)
c. Write a C program to compute cube of a given number using functions.

6 a. Choose the correct answers for the following :
(04 Marks)
i) The complement of $<$ is \qquad
B) $<=$
C) $>$
D) $==$
ii) What is the output of the following program segment \# include(stdio.h)
Void main ()
\{
int $\mathrm{i}=10$;
while (0)
A) 0
B) 10
C) No output
D) 0 is displayed ∞
times
iii) Which of the following is valid:
A) Case 4 :
B) Case " 4 " :
C) Case $\mathrm{i}+2$:
D) Case 'choice' :
iv) Which of the following loop is used when we do not know exactly how many times a set of statements have to be repeatedly executed.
A) for
B) while
C) do while
D) switch
b. Write a C program to find the roots of quadratic equation.
(08 Marks)
c. Differentiate between while and do while loop with example.
(08 Marks)

7 a. Choose the correct answers for the following :
(04 Marks)
i) Array always starts from index \qquad
A) 1
B) -1
C) 0
D) 2
ii) Linear search is also called as \qquad
A) Binary search
B) Sequential search
C) Traversal
D) Sort
iii) The string "0" occupies \qquad bytes
A) 2 byte
B) 1 byte
C) 4 byte
D) 8 byte
iv) In a variable length string, string always ends with a delimeter
A) POS
B) POS - 1
C) NULL
D) NULL + 1
b. Explain briefly the declaration and initialization of one dimensional array.
c. Write a C program to count vowels and constants in a given string.

8 a. Choose the correct answers for the following :
(04 Marks)
i) SET 1 stands for
A) Search for extra terrestrial intelligence
B) Search for extra topology intelligence
C) Search for extraordinary terrestrial intelligence
D) Search for extra typical intelligence
ii) The concept of sharing of memory by various threads in program is called \qquad
A) sharing memory
B) shared memory
C) sequential memory
D) sorting memory
iii) Which of the following directive is not used during synchronization of tasks
A) barrier directive
B) include directive
C) ordered directive
D) flush directive
iv) Which of the function returns non zero value if dynamic adjustment is enable
A) void Omp - get - dynamic (int dynamic _ thread)
B) int Omp - get - dynamic ()
C) void Omp - get - nested (int nested)
D) int Omp - get - nested ()
b. What is Thread? Explain the logical memory model of a thread.
c. What are the various motivating factors of Parallel programs?

First/Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017
Elements of Civil Engineering and Engineering Mechanics
Time: 3 hrs.
Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Choose the correct answers for the following :
(04 Marks)
i) A branch of civil engineering that deals with testing soils and foundation design is called.
A) structural engineering
B) geotechnical engineering
C) environmental engineering
D) highway engineering
ii) Highways which are superior to national highways and are provided wherever volume of traffic is very high are :
A) airways
B) express ways
C) road ways
D) district roads
iii) A bascule bridge is a
A) floating bridge
B) arch bridge
C) suspension bridge
D) movable bridge
iv) Shoulders are the components of
A) bridges
B) buildings
C) roads
D) dams.
b. Write a note on role of civil engineer in infrastructure development of a Nation. (08 Marks)
c. Explain any four types of dams with sketches.
(08 Marks)
2 a. Choose the correct answers for the following :
(04 Marks)
i) Forces whose line of action lie along the same line
A) coplanar non-concurrent
B) coplanar parallel
C) collinear
D) concurrent
ii) An object with only mass but no size in mechanics is
A) rigid body
B) point body
C) particle
D) deformable body
iii) Effect of a force on a body depends on
A) direction
B) magnitude
C) position
D) all of these
iv) The translators effect of a couple on the rigid body is
A) zero
B) maximum
C) minimum
D) none of these.
b. State the law of transmissibility of force.
(02 Marks)
c. A circular disc of radius 1 m is acted upon by four forces as shown in Fig. 2(c). Replace the forces by equivalent force couple system at 0 .
(06 Marks)

Fig. Q2(c)

Fig. Q2(d)
d. The four coplanar forces acting at a point are as shown in Fig. Q2(d). One of the forces is unknown and its magnitude is shown by P . The resultant is 500 N and is along x -axis. Determine the forces P and its inclination θ with x -axis.
(08 Marks)

3 a. Choose the correct answers for the following :
(04 Marks)
i) The technique of finding the resultant of a system of forces is called
A) resultant
B) resolution
C) composition
D) equilibrium
ii) If two concurrent forces each P act at right angles to each other, their resultant will be equal to
A) $2 \sqrt{\mathrm{P}}$
B) $\mathrm{P} \sqrt{2}$
C) 4 P
D) P
iii) Varignon's is theorem is applicable to
A) only coplanar force system
B) only concurrent force system
C) only non concurrent force system D) coplanar, concurrent and non-concurrent systems
iv) In a coplanar concurrent system if $\sum \mathrm{H}=0$ then the resultant is
A) horizontal
B) vertical
C) moment
D) none of these.
b. State and prove Varignon's theorem of moments.
(08 Marks)
c. Find the magnitude, direction and distance of the resultant from the point A for the system of forces shown in Fig. Q3(c).
(08 Marks)

4 a. Choose the correct answers for the following :
(04 Marks)
i) Moment of total area about its cenroidal axis
A) twice the area
B) three times the area
C) zero
D) none of these
ii) Centroid of plane is the point at which
A) weight of the body is concentrated
B) Mass of the body is concentrated
C) surface area of the body is concentrated
D) all of these
iii) Centroid of a rectangle of base width b and depth d is
A) $b / 3$ and $d / 3$
B) $b / 2$ and $d / 2$
C) $b / 4$ and $d / 4$
D) none of these
iv) Centroid of a quarter of a circular lamina lies from diameter line at a distance of
A) $4 R / 3 \pi$
B) $R \pi / 3$
C) $2 R / 3 \pi$
D) none of these.
b. Show that the centroid of a semi circle is at a distance of $4 R / 3 \pi$ from the diametral axis.
c. Locate the centroid for the Fig.Q4(c) with respect to point 0.

Fig. Q4(c)
2 of 4

PART - B

5 a. Choose the correct answers for the following :
(04 Marks)
i) A free body diagram is a diagram
A) drawn by free hand
B) separating the body from its surrounding and replacing with force vector
C) represents of a floating body
D) all of these
ii) If a body is in equilibrium it is concluded that
A) no force is acting
B) resultant is zero
C) moment about any pant is zero
D) both B and C
iii) The Lami's theorem can be applied only when number of unknown forces are
A) two
B) three
C) five
D) none of these
iv) The force which is equal and opposite to the resultant is
A) resultant force
B) force
C) equilibrant
D) none of these.
b. Find the tension in the strings for the Fig. Q5(b).
(06 Marks)

Fig. Q5(b)

Fig. Q5(c)
c. Determine the reaction at contact points for spheres A, B and C shown in Fig. Q5(c). Take $\mathrm{W}_{\mathrm{A}}=\mathrm{W}_{\mathrm{B}}=4 \mathrm{kN}, \mathrm{W}_{\mathrm{C}}=6 \mathrm{kN} . \mathrm{d}_{\mathrm{A}}=\mathrm{d}_{\mathrm{B}}=500 \mathrm{~mm}, \mathrm{~d}_{\mathrm{C}}=800 \mathrm{~mm}$.

6 a. Choose the correct answers for the following :
(04 Marks)
i) Statically determinate beams are
A) The beams which can be analyzed completecy, using static equations of equilibrium
B) the beams which can be analyzed without using static equations of equilibrium
C) fixed beams
D) none of these
ii) Water in a tank is an example of
A) point load
B) UDL
C) UVL
D) none of these
iii) Reaction line at roller support with respect to plane of contact is
A) oblique
B) perpendicular
C) inclined
D) none of these
iv) At fixed end of cantilever, the number of unknown reaction components are
A) 1
B) 2
C) 3
D) 4
b. Explain different types of supports with sketches.
c. Determine the support reactions for the beam shown in Fig. 6(c).

Fig. Q6(c)

7 a. Choose the correct answers for the following :
(04 Marks)
i) The coefficient of friction depends on
A) area of contact
B) roughness of contact surface ;
C) both A and B
D) none of these
ii) The maximum frictional force developed when the body just begins to slide is called
A) limiting friction
B) roiling friction
C) static friction
D) none of these
iii) Angle of friction is angle between
A) normal reaction and frictional force
B) normal reaction and resultant
C) weight of the body and friction force
D) normal reaction and weight of the body
iv) Compared to static friction, dynamic friction is
A) larger
B) equal
C) smaller
D) none of these
b. Explain with sketches: i) cone of friction ii) angle of repose.
(06 Marks)
c. An 8 m long uniform ladder weighing 500 N is resting on a rough horizontal floor and inclined at angle of 30° with the vertical wall Fig. Q7(c). A man weighing 750 N climbs the ladder. At what position will he induce slipping? The coefficient of friction between the ladder and the wall is 0.3 and that between the ladder and floor is 0.2 .
(10 Marks

Fig. Q7(c)
8 a. Choose the correct answers for the following :
(04 Marks)
i) The moment of inertia of anarea about an axis which is perpendicular to the plane is called
A) radius of Gyration
B) polar moment of inertia
C) second moment of area
D) none of the above
ii) If I_{a} is moment of inertia of a rectangle about its centriodal axis and I_{AB} is moment of inertia about its base, then
A) $I_{G}>I_{A B}$
B) $I_{G}<I_{A B}$
C) $I_{G}=I_{A B}$
D) none of the above
iii) Moment of inertia of a square of side ' B ' about its centriodal axis is
A) $\mathrm{B}^{4} / 8$
B) $B^{4} / 12$
C) $\mathrm{B}^{4} / 36$
D) $B^{4} / 48$
iv) M.I of hollow circular section whose external diameter is 8 mm and internal diameter is 4 mm and internal diameter is 4 mm about centriodal axis is
A) $437.5 \mathrm{~mm}^{4}$
B) $337.5 \mathrm{~mm}^{4}$
C) $237.5 \mathrm{~mm}^{4}$
D) $188.4 \mathrm{~mm}^{4}$.
b. State and prove parallel axis theorem.
(06 Marks)
c. Find the polar radius of gyration for the area shown in Fig.Q8(c) through the centriod.
(10 Marks)

Fig. Q8(c)

USN

10ELN15/25
First/Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Basic Electronics

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least two from each part.

PART - A

1 a. Choose the correct answers for the following :
(04 Marks)
i) When a diode is heavily doped
A) the leakage current will be low
B) the zener voltage will be low
C) the depletion region will be thin
D) the depletion region will be wide
ii) A high reverse voltage applied to a junction diode will cause an effect known as
A) Punch through
B) Avalanche breakdown
C) Diffusion
D) Saturation.
iii) Zener diode regulates only when it is connected in
A) forward bias
B) No bias
C) Short
D) Reverse bias.
iv) An ideal diode is having \qquad forward resistance.
A) zero
B) medium
C) high
D) none of these.
b. For a full wave rectifier circuit with two diodes, derive the current expression for
i) average value
ii) rms value
iii) Ripple factor
iv) efficiency
v) PIV. (10 Marks)
c. Design a voltage regulator using zener diode to meet the following specifications :

Dc unregulated input is $20 \mathrm{~V}, \mathrm{~V}_{0}=10 \mathrm{~V}$, load current is $0-20 \mathrm{~mA}, \mathrm{I}_{2 \min }=10 \mathrm{~mA}$, $\mathrm{I}_{2 \text { max }}=100 \mathrm{~mA}$.
(06 Marks)
2 a. Choose the correct answers for the following :
(04 Marks)
i) The arrow on the emitter of a transistor indicates
A) the direction of electron flow
B) the ground connection
C) the positive voltage point
D) the negative voltage point
ii) When a transistor is used as an amplifier, it is normally operated in ------- region.
A) Saturation
B) cut off
C) active
D) diffusion.
iii) The relation for α_{dc} in terms of β_{dc} is
A) $\alpha_{\mathrm{dc}}=\frac{1+\beta_{\mathrm{dc}}}{\beta_{\mathrm{dc}}}$
B) $\alpha_{\mathrm{dc}}=\frac{1-\beta_{\mathrm{dc}}}{\beta_{\mathrm{dc}}}$
C) $\alpha_{\mathrm{dc}}=\frac{\beta_{\mathrm{dc}}}{1-\beta_{\mathrm{dc}}}$
D) $\alpha_{\mathrm{dc}}=\frac{\beta_{\mathrm{dc}}}{1+\beta_{\mathrm{dc}}}$
iv) Find I_{E} of a transistor with $\mathrm{I}_{\mathrm{c}}=5.25 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}$
A) 5.53 mA
B) 5.35 mA
C) 6.35 mA
D) 4.53 mA
b. Draw the PNP transistor circuit in CB configuration. Sketch the output characteristics. Indicate active, saturation and cutoff regions. Briefly explain the nature of these curves.
c. For the CE circuit shown in Fig Q2(c). Draw the dc load line and mark the dc operating point on it Assume $\beta=100$ and neglect V_{BE}.
(06 Marks)

Fig Q2(c)

1 of 3

3 a. Choose the correct answers for the following :
(04 Marks)
i) The biasing circuit, which gives most stable operating points is
A) Fixed
B) Collector
C) Emitter
D) Voltage divider
ii) The stability factor (s) for a given transistor is
A) $\mathrm{S}=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\text {СВ }}}$
B) $\mathrm{S}=\frac{\Delta \mathrm{I}_{\text {CBO }}}{\Delta \mathrm{I}_{\mathrm{C}}}$
C) $\mathrm{S}=\frac{1}{\Delta \mathrm{I}_{\text {СВО }}}$
D) $\mathrm{S}=\frac{\Delta \mathrm{I}_{\mathrm{B}}}{\Delta \mathrm{I}_{\text {CBO }}}$
iii) The voltage divider biasing circuit is also called as
A) Self Bias
B) Emitter current Bias
C) Both A and B
D) None of these.
iv) In a transistor with normal bias, the emitter junction is
A) High resistance
B) No bias
C) Reverse biased
D) Forward biased.
b. With neat circuit diagram, explain the working of an base bias circuit transistor and its design procedure.
(08 Marks)
c. A voltage divider bias circuit with $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{C}}=6 \mathrm{k} \Omega$ uses a transistor with $\beta=80$, calculate suitable resistor values to give $\mathrm{V}_{\mathrm{CE}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=5 \mathrm{~V}$. Assume $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$. (08 Marks)

4 a. Choose the correct answers for the following :
i) A Silicon controlled Rectifier is a \qquad layer device
A) Two
B) Three
C) Four
D) None of these.
ii) The region between peak point and valley point in VI characteristics of UJT is called \qquad
A) cut off region
B) active region
C) Negative resistance region
D) Saturation region.
iii) When JFET is operated above pinch off voltage its drain current.
A) Becomes zero
B) Starts decreasing
C) Increases sharply
D) Becomes constant.
iv) The function of gate in SCR is to control the
A) voltage regulation
B) Flow of current
C) voltage amplification
D) All of these.
(04 Marks)
b. Draw and explain and VI characteristics of SCR.
c. Draw the typical drain characteristics of P-channel JFET and indicate various regions and explain.
(08 Marks)

PART - B

5 a. Choose the correct answers for the following :
i) The advantages of negative feedback is
A) to stabilize the voltage gain
B) to increase the bandwidth
C) to reduce phase shift distortion
D) All of these.
ii) In case of RC phase shift oscillator, the RC network produces a phase shift of
A) 90°
B) 270°
C) 180°
D) 360°
iii) The objective of using a crystal oscillator is to get
A) 50 to 70 Hz
B) stable frequency
C) Variable frequency
D) none of these.
iv) Which of the following oscillator is used to generate high frequencies?
A) RC phase shift
B) Wein bridge
C) L.C oscillator
D) Colpitts oscillator.
(04 Marks)
b. With a neat circuit diagram, explain the working of a two stage capacitor coupled CE amplifier.
(08 Marks)
c. With a neat circuit diagram, explain the working of Hartley oscillator. State the condition for oscillations.
(08 Marks)

6 a. Choose the correct answers for the following :
i) The common mode rejection ratio of an ideal op-amp is
A) zero
B) low
C) high
D) infinite
ii) The differential amplifier has
A) one input and one output
B) two inputs and two outputs
C) two inputs and one output
D) one input and two outputs
iii) -------- converts physical quantity to electrical signal
A) Amplifier
B) Transducer
C) Modulator
D) Transmitter.
iv) What is the output voltage of an inverting amplifier, if the input voltage is 0.2 V and $\mathrm{R}_{\mathrm{A}}=20 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{f}}=200 \mathrm{~K} \Omega$.
A) 2 V
B) -10 V
C) 20 V
D) -2 V
(04 Marks)
b. Draw the following circuits using inverting op-amp and derive its output voltage
i) Adder
ii) Integrator.
(10 Marks)
c. Draw the block diagram of a CRO and explain the function of each block.
(06 Marks)
7 a. Choose the correct answers for the following :
(04 Marks)
i) The expression for modulation index in terms of carrier power and total power in an AM wave is
A) $\mathrm{m}_{\mathrm{a}}=\sqrt{2\left(\frac{\mathrm{pt}}{\mathrm{pc}}-1\right)}$
B) $m_{a}=\sqrt{2\left(\frac{p t}{p c}-1\right)^{2}}$
C) $m_{a}=\sqrt{\left(\frac{p t}{p c}-1\right)}$
D) None of these.
ii) What is the 2 's complement value of $15_{(16)}$
A) 0001
B) 0000
C) 0100
D) 1000 .
iii) The Hexadecimal number A9, its equivalent value in binary
A) 10011010
B) 10101001
C) 10001001
D) 10100101 .
iv) $35_{(10)}+26_{(8)}$ in binary is
A) 001101
B) 111001
C) 110010
D) 100100 .
(04 Marks)
b. Explain the need for modulation.
(04 Mark
signal of
c. A carrier of 1 MHz with 400 w of power is amplitude modulated with a sinusoidal signal of 2500 Hz . The depth of modulation is 75% calculate the sideband of frequency bandwidth and power in sidebands and total power in modulated wave
(06 Marks)
d. Solve the following
i) $[0.7642]_{10}=-------{ }^{(2)}$
ii) $[\mathrm{AD} 6 \mathrm{CB}]_{16}=$ \qquad (8) iii) $[11011.1011]_{2}=$
---------- 8
iv) Add (BCD) $)_{16}$ to (F89) ${ }_{16}$ v) Subtract using 8 's complement method $66_{(8)}-64_{(8)}$
vi) Subtract using 1 's complement method $1010.001_{(2)}-100.11_{(2)}$
(06 Marks)
8 a. Choose the correct answers for the following :
(04 Marks)
i) NAND gate is a combination of \qquad and
A) AND and OR
B) OR and NOT
C) AND and NOT
D) None of these.
ii) A logic gate is having ------- Number of inputs.
A) 1
B) 2
C) 3
D) 1 or more
iii) For which gate, when the two inputs A and B are equal the output is one and otherwise zero.
A) AND
B) NOT
C) EX-NOR
D) EX-OR
iv) Simplified form of Boolean expression $(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$ is
A) $\mathrm{AB}+\mathrm{C}$
B) $\bar{A}+B C$
C) $A+B C$
D) $A+B+C$.
b. Draw the logic circuit for full adder and write its truth table with expression.
(08 Marks)
c. Simply the following Boolean expressions and realize them using NAND gates.
i) $F(X, Y, Z)=X \bar{Y} \bar{Z}+\bar{X} \bar{Y} \bar{Z}+\bar{X} \bar{Y}+X \bar{Y}$
ii) $F(X, Y, Z)=(\overline{X+\bar{Y}} \mathrm{Z})(\overline{\mathrm{X}}+\overline{\mathrm{Y}}+\overline{\mathrm{Z}})(\overline{\mathrm{X}}+\mathrm{Y})$

$$
* * 3 \text { of } 3 \quad * * *
$$

First/Second Semester B.E Degree Examination, Dec.2016/Jan. 2017

Environmental Studies

(COMMON TO ALL BRANCHES)

Time: 2 hrs.]

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the fifty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.
6. The study of interactions between living organisms and environment is called as,
a) Ecosystem
b) Ecology
c) Phytogeography
d) Phytosociology
7. The short term properties of the atmosphere at a given place and time is referred as,
a) Climate
b) Microclimate
c) Season
d) Weather
8. Common energy source in Indian villages is,
a) Electricity
b) Coal
c) Sun
d) Wood and animal dung.
9. Fossil fuels and metallic minerals are,
a) Renewable resources
b) In exhaustible resources
c) Non-renewable resources
d) None of these
10. Bath power and manure is provided by,
a) Nuclear plants
b) Thermal plants
c) Biogas plants
d) Hydroelectric plants
11. Deforestation generally decreases,
a) Rainfall
b) Soil erosion
c) Drought
d) Global warming
12. Chipko movement was started to conserve,
a) Forest
b) Grass land
c) Deserts
d) Soil
13. Terrace farming is practiced in,
a) Coastal areas
b) Deserts
c) Hills
d) Plains
14. Which ecological pyramid is always straight?
a) Pyramid of biomass
b) Pyramid of numbers
c) Pyramid of energy
d) Pyramid of numbers and biomass.
15. Increases in fauna and decrease in flora would be harmful due to increase in,
a) Diseases
b) CO_{2}
c) O_{2}
d) Radioactive pollution
16. Tropical forest occurs in India in,
a) Jammu and Kashmir
b) Rajasthan
c) Kerala and Assam
d) No where
17. If all the plants of the earth die suddenly all the animals die due to deficiency of
a) Food
b) Shade
c) Oxygen
d) Shelter
18. In our country the percentage of land under forest is about,
a) 20%
b) 19%
c) 25%
d) 30%
19. The area reserved for the welfare of wildlife is called,
a) National park
b) Botanical garden
c) Sanctuary
d) Forest
20. Acid rain is caused by increase in the atmospheric concentration of,
a) Ozone and dust
b) SO_{2} and NO_{2}
c) $\mathrm{SO}_{3} \& \mathrm{CO}$
d) $\mathrm{CO}_{2} \& \mathrm{CO}$
21. Gas leaked in Bhopal tragedy was,
a) Potassium isothiocynate
b) Sodium isothiocynate
c) Ethyl isocynate
d) Methyl isocyanate
22. Ozone layer of upper atmosphere is being destroyed by,
a) Sulphur dioxide
b) Photochemical oxidants
c) Chloroflurocarbon
d) Smog
23. Dysentry spread due to,
a) Food adultration
b) Humid weather
c) Water pollution
d) Air pollution
24. Maximum deposition of DDT will occur in,
a) Phytoplankton
b) Crab
c) Eel
d) Sea gull
25. Diesease caused by eating fish inhabiting mercury contaminated water is,
a) Bright's disease
b) Minimata diseases
c) Hashimoto disease
d) Osteosclerosis
26. Fluoride pollution mainly affects,
a) Kidney
b) Brain
c) Heart
d) Teeth
27. Which of the following is not a greenhouse gas?
a) Oxygen
b) CO_{2}
c) Chloroflurocarbons
d) Methane
28. Study of trends in human population growth and prediction of future growth is called,
a) Demography
b) Biography
c) Kalography
d) Psychology
29. The number of babies produced per thousand individuals is called,
a) Natality
b) Mortality
c) Immigration
d) Emigration
30. A pesticide/insecticide which has reported to cause physical deformities and disease in infants in Karnataka and Kerala state recently is,
a) Endosulfan
b) DDT
c) Amitraz
d) None of these
31. The highest concentration of people with HIV infection have been recorded from,
a) USA
b) India
c) China
d) Africa
32. Vasectomy is the method of sterilization in,
a) Man
b) Woman
c) Both Man and Woman
d) None of these
33. ICDS is a welfare scheme for,
a) Public
b) Women
c) Men
d) Children
34. The common pollutants present in ponds and pools nearby agricultural fields are,
a) Dust
b) Straw
c) Pollons
d) Chemical fertilizer \& pesticide
35. The noi-green plants which obtains food from other plants are called,
a) Hosts
b) Parasites
c) Saprophytes
d) Insectivorous plants
36. The liquid wastes from bathroom and kitchens are called,
a) Sullage
b) Domestic sewage
c) Storm water
d) Runoff
37. EIA is abbreviated form for,
a) Energy impact assessment
b) Ecological impact assessment
c) Environmental impact assessment
d) Emission impact assessment
38. The fossil fuel which cause maximum environmental pollution due to its use in generation of thermal power is,
a) Coal
b) Oil
c) Natural gas
d) None of these
39. Most stable ecosystem is,
a) Forest
b) Desert
c) Ocean
d) Mountains
40. What is the pH range of drinking water,
a) 6 to 9
b) 6.5 to 8.5
c) 6 to 8.5
d) 6.5 to 7.5
41. Biogas is mostly made of,
a) Hydrogen
b) Carbon dioxide
c) ethane
d) Methane
42. Which of the following is not a natural disaster:
a) Cyclone
b) Nuclear explosion
c) Earthquake
d) Volcane
43. Which state is having highest women illiteracy rate in India?
a) Karnataka
b) Punjab
c) Rajasthan
d) Kerala
44. The percentage of water accounted by oceans and seas is,
a) 90%
b) 87%
c) 97%
d) 99%
45. Which of the is not a biodegradable pollutant?
a) Plastic
b) Skins of vegetables and fruits
c) Dry leaves
d) Paper
46. The concept of BOD comprises of \qquad ?
a) Biochemical oxygen demand
c) A measure of the organic matter present in waste water
b) Usually less than C.O.D
d) All of these
47. Environmental (protection) act was enacted in the year,
a) 1986
b) 1992
c) 1984
d) 1974
48. Which of the following devices is most suitable for removal of gaseous pollutant?
a) Cyclonic separator
b) Fabric filter
c) Electrostatic precipitator
d) Wet collector
49. ISO14000 standard deals with,
a) Pollution management
b) Risk management
c) Environmental management
d) None of these
50. Sound becomes hazardous when noise pollution at \qquad decibels.
a) above 30
b) above 80
c) above 100
d) above 120
51. A major nitrogen storage reservoir is,
a) River
b) Atmosphere
c) Oceans
d) Trees
52. Hydrological cycle mainly involves,
a) Air and Water
b) Sun and Water
c) Animal and Water
d) Mountain and Water
53. Khetri (Rajasthan) is famous for,
a) Gold mines
b) Copper mines
c) Granite stone
d) Marble stone
54. Cauvery water dispute is in between,
a) India and Pakistan
b) Punjab and Haryana
c) Uttar Pradesh and Madhya Pradesh
d) Karnataka and Tamilnadu
55. National park concerned with rhinoceros is,
a) Corbett
b) Ranthambore
c) Kaziranga
d) Valley of flower

I / II Semester B.E Degree Examination, Dec.2016/Jan. 2017

CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS (COMMON TO ALL BRANCHES)

Time: 2 hrs.]

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the fifty questions, each question carries one mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.
6. The system of Dyarchy was introduced for the first time by the
a) Government of India Act, 1858
b) Indian Councils Act, 1909
c) Government of India Act, 1919
d) Government of India Act, 1935.
7. The emergency provisions of the Indian Constitution are adopted from the Constitution of
a) U.S.A
b) Germany
c) Canada
d) Russia.
8. Which of the following Articles contain Fundamental Rights?
a) Article 12 to 35
b) Article 15 to 39
c) Article 30 to 45
d) Article 19 to 29 .
9. Since when India became a republic?
a) $15^{\text {th }}$ August, 1947
b) $26^{\text {th }}$ November, 1949 .
c) $26^{\text {th }}$ January, 1950
d) $1^{\text {st }}$ January, 1949.
10. This word was not added to the Preamble of the Indian Constitution by $42^{\text {nd }}$ Constitution Amendment Act.
a) Socialist
b) Republic
c) Secular
d) Integrity.
11. Fundamental Rights have been classified into
a) Five groups
b) Six groups
c) Seven groups
d) Four groups.
12. Dr. B.R. Ambedkar termed Article 32 of the Indian Constitution as the "Heart and Soul of the Indian Constitution". Which one of the following fundamental right it contains?
a) Right to freedom
b) Right to Constitutional remedies
c) Right against exploitation
d) Right to freedom of religion.
13. Cultural and Educational Rights have been incorporated under Fundamental Rights with the objective
a) To preserve Indian culture
b) To eradicate illiteracy
c) To evolve a single culture
d) To help minorities to conserve their culture
14. Under the Constitution, the power to issue a writ of Habeas Corpus is vested in
a) High Courts alone
b) Supreme Court alone
c) Both Supreme Court and High Court
d) All Courts down to the District Courts
15. Right to property, according to Constitution of India is a
a) Fundamental Right
b) Directive principle
c) Legal Right
d) Social Right
16. Which part of the Indian Constitution deals with the Directive Principles of State Policy?
a) Part III
b) Part IV
c) Part V
d) Part VI.
17. Which of the following Directive Principles is based on Gandhian ideology?
a) Equal pay for equal work of both men and women
b) Protection of children from exploitation
c) Securing for all people right to work
d) Promotion of cottage industries.
18. The main purpose of including the Directive Principles of State Policy in the Indian Constitution is to
a) Establish a Welfare state
b) Establish a Secular state
c) Check the arbitrary action of the Government
d) Establish a religious state.
19. The Directive Principles of State Policy are
a) Non - Justiceable
b) Partly Justiceable
c) Always Justiceable
d) Justiceable.
20. Which one of the following is not a Directive Principle of State Policy?
a) Improvement of Public health
b) Prohibiting the slaughter of cows and calves
c) Free legal aid to poor
d) Provisions for Adult Education.
21. Which one among the following is not a fundamental duty?
a) Safeguarding public property
b) Avoid corruption
c) Abide by the Constitution
d) Developing scientific temper
22. The total number of Fundamental duties of Indian citizens are
a) 10
b) 11
c) 12
d) 15
23. Members of Rajya Sabha are elected by
a) Members of Lok Sabha
b) Members of Legislative council
c) Members of Legislative Assembly
d) Adult Franchise
24. How many members represent Union Territories in Lok Sabha?
a) 20
b) 21
c) 22
d) 25
25. President of India is an integral part of
a) Lok Sabha only
b) Rajya Sabha only
c) Parliament
d) Union Council of Ministers.
26. The Supreme Court of India is
a) Under the Prime Minister
b) Under the President
c) Under the Parliament
d) Independent.
27. Who among the following gives advice to the President of India?
a) Council of Ministers with the Prime Minister at the head
b) Lok Sabha Speaker
c) Chief Justice of India
d) Chairman of Rajya Sabha.
28. The Constitutional and Executive head of the State is
a) Chief Minister
b) President of India
c) Governor of the State
d) Prime Minister of India.
29. How many Anglo - Indians are nominated by the Governor to the Sate Legislative Assembly?
a) Two
b) Three
c) One
d) Five.
30. In which of the following States Legislature consists of two houses ($\mathrm{Bi}-\mathrm{Cameral}$)?
a) Gujarat
b) Rajasthan
c) Bihar
d) Punjab.
31. The State Council of Ministers are collectively responsible to the
a) Chief Minister
b) Governor
c) State Legislative Assembly
d) State Legislative Council.
32. The Chief Justice and other Judges of High courts continue in office until they attain the age of
a) 60 years
b) 62 years
c) 58 years
d) 65 years
33. Article 21 A - Right to education as a Fundamental Right was added to the Indian Constitution by
a) $42^{\text {nd }}$ Amendment Act
b) $44^{\text {th }}$ Amendment Act
c) $86^{\text {th }}$ Amendment Act
d) None of these.
34. Proclamation of National Emergency under Article 352 is issued by the
a) Prime Minister
b) President of India
c) Home Minister
d) Defence Minister.
35. State Emergency proclamation under Article 356 shall be approved by the Parliament within a period of
a) 6 months
b) 4 months
c) 3 months
d) 2 months
36. The Chief Election Commissioner of India is appointed by the
a) President
b) Prime Minister
c) Chief Justice of India
d) Parliament.
37. What is the tenure of office for the Election Commissioners?
a) 5 years or 65 years age whichever is early
b) 6 years or 60 years age whichever is early
c) 6 years or 65 years age whichever is early
d) 5 years or 60 years age whichever is early
38. Indian Constitution guarantees reservation of seats to scheduled castes (SC) and schedule tribes (ST) in
a) Lok Sabha and Legislative Assemblies
b) Lok Sabha only
c) Legislative Assemblies only
d) Rajya Sabha only
39. At present, the number of seats reserved in Government service for SC and ST people together is
a) 22.5% seats
b) 27% seats
c) 30.5% seats
d) 49.5% seats
40. The National commission for women was established under the
a) New Act, 1988
b) New Act, 1989
c) New Act, 1990
d) New Act, 1991
41. The Indian Federal system is modeled on the Federal system of
a) Canada
b) U.S.A
c) Australia
d) New Zealand
42. Which one of the following write is issued by the Supreme Court to restrain a person from occupying a position in public office to which he is not entitled?
a) Writ of Habeas Corpus
b) Writ of Mandamus
c) Writ of Prohibition
d) Writ of Quo - Warranto
43. The President of India shall make Oath or affirmation while taking office in the presence of
a) Prime Minister
b) Chief Justice of India
c) Attorney General of India
d) Speaker of Lok Sabha
44. The total number of State Council of Ministers including the Chief Minster shall not exceed
a) 10% of the membership strength of the Legislative Assembly.
b) 12% of the membership strength of the Legislative Assembly.
c) 15% of the membership strength of the Legislative Assembly
d) 20% of the membership strength of the Legislative Assembly.
45. Vice - President of India is elected by the members of
a) Lok Sabha and Rajya Sabha
b) Lok Sabha
c) Rajya Sabha
d) State Legislative Assembly
46. The codes of ethics can be taken as guidelines by engineers to
a) Formulate the problem
b) Resolve the conflicts
c) Overcome the work pressure
d) Escape from the responsibility
47. Engineering Ethics is a
a) Preventive ethics
b) Developing ethics
c) Natural ethics
d) Scientifically developed ethics
48. As applied to responsibility, attitude of concern or caring is the prime concern in
a) Minimalist model
b) Reasonable care model
c) Good works model
d) Maximalist model.
49. \qquad is not the symptom of group thinking
a) Mind guarding
b) Self - censorship
c) Illusion of unanimity
d) Egocentric tendencies.
50. It does not amount to misusing the truth
a) Failure to seek out the truth
b) Biased professional information
c) Withholding information
d) Deliberate deception
51. Which one of the following is not a conflict of interest as applied to making judgment?
a) Virtual
b) Apparent
c) Actual
d) Potential
52. The use of intellectual property of others without their permission or credit is referred as
a) Cooking
b) Trimming
c) Plagiarism
d) Forging
53. A fault tree is used to
a) assess the risk involved
b) to claim compensation
c) take free consent
d) to improve safety.
54. A compound measure of the probability and magnitude of adverse effect is known as
a) Benefit
b) Compensation
c) Risk
d) both (a) \& (b)
55. The purpose of professional codes is to
a) Guide the members
b) Educate the members
c) Discipline the members
d) All of these

10MAT21

Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017
 Engineering Mathematics - II

Note: Answer FIVE full questions, choosing at least two from each part.

PART - A

1 a. Choose the correct answers for the following :
(04 Marks)
i) The general solution of $p^{2}-7 p+12=0$ is,
A) $(y+3 x-c)(y+4 x-c)=0$
B) $(y-3 x-c)(y-4 x-c)=0$
C) $(y-4 x)(y+3 x)=0$
D) None of these
ii) If a differential equation is solvable for y then it is of the form,
A) $x=f(y, p)$
B) $y=f(x, p)$
C) $y=f\left(x^{2}, p y\right)$
D) $x=f\left(y^{2}, p\right)$
iii) The singular solution of the equation $\mathrm{P}=\log (\mathrm{px}-\mathrm{y})$ is,
A) $y=x(\log x-1)$
B) $y=1-\log x$
C) $y=\log x-2 x$
D) $y=1-\log \left(\frac{1}{x}\right)$.
iv) Clairaut's equation of $\mathrm{P}=\sin (\mathrm{y}-\mathrm{xp})$ is,
A) $y=\frac{P}{x}+\sin ^{-1} p$
B) $y=p x+\sin p$
C) $y=p x+\sin ^{-1} p$
D) $y=x+\sin ^{-1} p$
b. Solve: $p(p+y)=x(x+y)$.
(05 Marks)
c. Solve : $y=2 p x+y^{2} p^{3}$.
(05 Marks)
d. Obtain the general solution and singular solution of the equation, $\sin p x \cos y=\cos p x \sin y+p$

2 a. Choose the correct answers for the following :
(04 Marks)
i) Roots of $y^{\prime \prime}-6 y^{\prime}+13 y=0$ are,
A) $2 \pm 3 \mathrm{i}$
B) $2 \pm \mathrm{i}$
C) $3 \pm \mathrm{i}$
D) $3 \pm 2 \mathrm{i}$
ii) The value of $\frac{1}{D}(f(x))$ is,
A) $f^{\prime}(x)$
B) $\frac{1}{f^{\prime}(x)}$
C) $\int \frac{1}{f(x)} d x$
D) $\int f(x) d x$
iii) The complementary function for the differential equation, $y^{\prime \prime}+2 y^{\prime}+y=\cosh x$ is,
A) $\left(c_{1}+c_{2} x\right) e^{-x}$
B) $c_{1} e^{-x}+c_{2} e^{x}$
C) $\left(c_{1}+c_{2} x\right) e^{x}$
D) $\left(c_{1}+c_{2}\right) e^{-x}$
iv) The particular integral of $\left(D^{2}-2 D+4\right) y=e^{x} \cos x$ is,
A) $\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}$
B) $\frac{e^{x} \cos x}{2}$
C) $\frac{e^{x} \sin x}{2}$
D) None of these
b. Solve $\left(4 D^{4}-4 D^{3}-23 D^{2}+12 D+36\right) y=0$ where $D=\frac{d}{d x}$.
(05 Marks)
c. Solve : $\left(D^{2}-2 D+5\right) y=e^{2 x} \sin x$.
(05 Marks)
d. Solve : $\frac{d x}{d t}-2 y=\cos 2 t, \frac{d y}{d t}+2 x=\sin 2 t$ given that $x=1, y=0$ at $t=0$.
(06 Marks)
3 a. Choose the correct answers for the following:
(04 Marks)
i) By the method of variation of parameters, the value of W is called,
A) the Demorgan's function
B) Euler's function
C) Wronskian of the function
D) None of these
ii) In $x^{2} y^{\prime \prime}-x y^{\prime}+y=x^{2} \log x$ if $x=e^{t}$ then we get for $x^{2} y^{\prime \prime}$ as,
A) $(D-1) y$
B) $D(D-1) y$
C) $D(D+1) y$
D) $D(D+2) y$
iii) To transform $(a x+b)^{2} y^{\prime \prime}+K_{1}(a x+b) y^{\prime}+K_{2} y=\phi(x)$ into Legendre's linear equation we put $(\mathrm{ax}+\mathrm{b})=$ \qquad
A) e^{-t}
B) $1+e^{t}$
C) $\frac{1}{e^{-t}}$
D) $1-e^{t}$
iv) Frobenius series method of second order linear differential equation is of the form,
A) $\mathrm{x}^{\mathrm{m}} \sum_{\mathrm{r}=0}^{\infty} \mathrm{a}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}$
B) $\sum_{r=0}^{\infty} \mathrm{a}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}$
C) $\sum_{r=0}^{\infty} a_{r} x^{m-r}$
D) None of these
b. Solve $\left(D^{2}+1\right) y=\operatorname{cosec} x \cot x$ by the method of variation of parameters.
(05 Marks)
c. Solve: $x^{2} y^{\prime \prime}+x y^{\prime}+9 y=3 x^{2}+\sin (3 \log x)$.
(05 Marks)
d. Obtain the series solution of the equation, $\frac{d^{2} y}{d x^{2}}+x y=0$.
(06 Marks)
4 a. Choose the correct answers for the following :
(04 Marks)
i) Form the partial differential equation by eliminating a and b from the relation $z=(x+a)(y+b)$ is,
A) $z=p q$
B) $\mathrm{z}=\mathrm{p}+\mathrm{q}$
C) $z=1+p$
D) $\mathrm{z}=1+\mathrm{q}$
ii) The solution of $u_{x x}=x+y$ is $u=$ \qquad .
A) $\frac{x^{3}}{6}+\frac{x^{2} y}{2}+x f(y)+g(y)$
B) $\frac{x^{3}}{4}+\frac{x^{2} y^{2}}{2}+y f(x)+g(y)$
C) $\frac{x y}{3}+\frac{x y}{4}+y f(y)+g(x)$
D) None of these
iii) The auxiliary equations of Lagrange's linear equation, $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ are,
A) $\frac{d x}{P}=\frac{d y}{q}=\frac{d z}{R}$
B) $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$
C) $\frac{d x}{P}=\frac{-d y}{Q}=\frac{d z}{R}$
D) $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$
iv) In the method of separation of variables to solve $u_{x}=2 u_{t}+u$, the trial solution is $\mathrm{u}=$ \qquad .
A) $X(x) Y(y)$
B) $X+Y$
C) $\mathrm{Z}=\mathrm{X}^{2}+\mathrm{Y}^{2}$
D) $X(x) T(t)$
b. Solve $\frac{\partial^{2} z}{\partial x^{2}}+z=0$ given that when $x=0, z=e^{y}$ and $\frac{\partial z}{\partial x}=1$.
c. Solve : $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$. (05 Marks)
d. Solve by the method of separation of variables $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}(06$ Marks $)$

PART - B

5 a. Choose the correct answers for the following :
(04 Marks)
i) The value of $\int_{0}^{1} \int_{0}^{6} x y d x d y$ is \qquad
A) 6
B) 7
C) 8
D) 9
ii) The integral $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}(x+y) d y d x$ after changing the order of integration is \qquad ,
A) $\int_{0}^{2} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x d y$
B) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x d y$
C) $\int_{0}^{1} \int_{0}^{\sqrt{1+y^{2}}}(x+y) d x d y$
D) None of these
iii) The value of $\int_{0}^{\infty} \mathrm{e}^{-x^{2}} d x$ is \qquad
A) $\pi \sqrt{2}$
B) $2 \sqrt{\pi}$
C) $\sqrt{2 \pi}$
D) $\sqrt{\pi} / 2$
iv) In terms of Beta function $\int_{0}^{\frac{\pi}{2}} \sin ^{7} \theta \sqrt{\cos \theta} \mathrm{~d} \theta=$ \qquad
A) $\beta\left(4, \frac{3}{4}\right)$
B) $\frac{1}{2} \beta\left(4, \frac{3}{4}\right)$
C) $\beta\left(2, \frac{3}{2}\right)$
D) $\frac{1}{2} \beta\left(2, \frac{3}{2}\right)$
b. Evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{\frac{-x^{2}}{y}} d y d x$ by changing the order of integration.
(05 Marks)
c. Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} d z d y d x$.
(05 Marks)
d. Express the integral $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of beta functions and hence evaluate $\int_{0}^{1} x^{5}\left(1-x^{3}\right)^{10} d x$.
(06 Marks)
6 a. Choose the correct answers for the following :
(04 Marks)
i) If $\int_{C} \vec{F} \cdot d \vec{r}=0$ then \vec{F} is called,
A) Rotational
B) Solenoidal
C) Irrotational
D) Dependent
ii) If $f=\left(5 x y-6 x^{2}\right) i+(2 y-4 x) j$ then $\int f$.dr where C is the curve $y=x^{3}$ from the points $(1,1)$ to $(2,8)$ is,
A) 35
B) -35
C) $3 x+4 y$
D) None of these
iii) In Green's theorem in the plane $\iint_{A}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$ is \qquad
A) $\iint_{C}(M d x-N d y)$
B) $\int_{C}(M d x) \times(N d y)$
C) $\int_{C}(\mathrm{Ndx}-\mathrm{Mdy})$
D) $\int_{C}(M d x+N d y)$
iv) If C be a simple closed curve in space and S be the open surface, f be the vector field then $\int_{C} f \cdot d v=$
A) $\int_{\mathrm{s}}($ curlf $) \cdot \mathrm{nds}$
B) $\int_{C}(\nabla \times f) \cdot d s$
C) $\int_{\mathrm{S}}\left(\nabla^{2} f\right) \cdot n d s$
D) $\int_{\mathrm{C}}(\nabla \cdot \mathrm{f}) \cdot \mathrm{nds}$
b. If $f=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} k$ evaluate $\int_{C} f \cdot d r$ from $(0,0,0)$ to $(1,1,1)$ along the curve C given by $x=t, y=t^{2}, z=t^{3}$.
(05 Marks)
c. Verify Green's theorem for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve made up of the line $y=x$ and the parabola $y=x^{2}$.
(05 Marks)
d. If $\vec{F}=2 x y i+y z^{2} j+x z k$ and S is the rectangular parallelopiped bounded by $x=0, y=0$, $\mathrm{z}=0, \mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=3$ evaluate $\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \hat{\mathrm{n}} \mathrm{ds}$.
(06 Marks)

7 a. Choose the correct answers for the following :
(04 Marks)
i) $\quad \mathrm{L}\{\sinh \mathrm{at}\}=$ \qquad
A) $\frac{a}{\mathrm{~s}^{2}+\mathrm{a}^{2}}$
B) $\frac{s}{s^{2}-a^{2}}$
C) $\frac{a}{s^{2}-a^{2}}$
D) $\frac{\mathrm{s}}{\mathrm{s}^{2}+\mathrm{a}^{2}}$
ii) $L\left\{t^{2} \mathrm{e}^{-\mathrm{at}}\right\}=$ \qquad
A) $\frac{1}{(s+a)^{3}}$
B) $\frac{2}{(s+a)^{2}}$
C) $\frac{3}{(s+a)^{3}}$
D) $\frac{2}{(s+a)^{3}}$
iii) Transform of unit function $\mathrm{L}\{\mathrm{u}(\mathrm{t}-\mathrm{a})\}=$ \qquad
A) $\frac{\mathrm{e}^{a s}}{\mathrm{~s}}$
B) $\frac{e^{-a s}}{s^{2}}$
C) $\frac{e^{-a s}}{s}$
D) $\frac{e^{a s}}{s^{2}}$
iv) $\mathrm{L}[\delta(\mathrm{t}-\mathrm{a})]$ is equal to,
A) 0
B) -1
C) $e^{-a s}$
D) $e^{a s}$
b. Find $\left[\frac{1-\cos 3 t}{t}\right]$.
c. Find $L\{f(t)\}$ where $f(t)=\left\{\begin{array}{cc}3 t, & 0<t<2 \\ 6, & 2<t<4\end{array}\right.$ where the period is 4 .
(05 Marks)
d. Express $f(t)$ in terms of unit step function and hence find $L\langle f(t)\}$ given that $\mathrm{f}(\mathrm{t})=\left\{\begin{array}{ll}\mathrm{t}^{2}, & 0<\mathrm{t} \leq 2 \\ 4 \mathrm{t}, & \mathrm{t}>2\end{array}\right.$.
(06 Marks)

8 a. Choose the correct answers for the following
(04 Marks)
i) $\quad L^{-1}\left\{\frac{\mathrm{~s}}{\mathrm{~s}^{2}-16}\right\}=$ \qquad
A) $\cosh 4 t$
B) $\sinh 4 t$
C) $\frac{1}{4} \cos 4 t$
D) None of these
ii) $\quad L^{-1}\left\{\frac{s+1}{s^{2}+6 s+9}\right\}$ \qquad
A) $\mathrm{e}^{3 t}(1+2 \mathrm{t})$
B) $e^{-3 t}(1-2 t)$
C) $e^{-3 t}(1+2 t)$
D) $e^{-3 t}(1+t)$
iii) $L^{-1}\left\{\cot ^{-1}\left(\frac{s}{a}\right)\right\}=$ \qquad
A) $\frac{\sin t}{t}$
B) $\frac{\sinh a t}{t}$
C) $\frac{\sin a t}{t}$
D) $\frac{\sinh t}{t}$
iv) $\quad L^{-1}[\overline{\mathrm{f}}(\mathrm{s}) \cdot \overline{\mathrm{g}}(\mathrm{s})]=$ \qquad
A) $f(t) \cdot g(t)$
B) $\int_{0}^{t} f(u) g(t-u) d u$
C) $\int_{0}^{t} f(u) g(u) d u$
D) None of these
b. Find $\mathrm{L}^{-1}\left[\frac{4 \mathrm{~s}+5}{(\mathrm{~s}+1)^{2}(\mathrm{~s}+2)}\right]$.
c. Find $\mathrm{L}^{-1}\left[\frac{\mathrm{~s}}{\left(\mathrm{~s}^{2}+\mathrm{a}^{2}\right)^{2}}\right]$ using convolution theorem.
(05 Marks)
d. Solve $y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)=e^{-t}$ with $y(0)=0$ and $y^{\prime}(0)=0$ using Laplace transform method.
(06 Marks)

USN

10MAT21

Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Engineering Mathematics - II

Note: Answer FIVE full questions, choosing at least two from each part.

PART - A

1 a. Choose the correct answers for the following:
(04 Marks)
i) The general solution of $\mathrm{p}^{2}-7 \mathrm{p}+12=0$ is,
A) $(y+3 x-c)(y+4 x-c)=0$
B) $(y-3 x-c)(y-4 x-c)=0$
C) $(y-4 x)(y+3 x)=0$
D) None of these
ii) If a differential equation is solvable for y then it is of the form,
A) $x=f(y, p)$
B) $y=f(x, p)$
C) $y=f\left(x^{2}, p y\right)$
D) $x=f\left(y^{2}, p\right)$
iii) The singular solution of the equation $P=\log (p x-y)$ is,
A) $y=x(\log x-1)$
B) $y=1-\log x$
C) $y=\log x-2 x$
D) $y=1-\log \left(\frac{1}{x}\right)$.
iv) Clairaut's equation of $P=\sin (y-x p)$ is,
A) $y=\frac{P}{x}+\sin ^{-1} p$
B) $y=p x+\sin p$
C) $y=p x+\sin ^{-1} p$
D) $y=x+\sin ^{-1} p$
b. Solve: $p(p+y)=x(x+y)$.
(05 Marks)
c. Solve : $y=2 p x+y^{2} p^{3}$.
(05 Marks)
d. Obtain the general solution and singular solution of the equation, $\sin p x \cos y=\cos p x \sin y+p$
(06 Marks)
2 a. Choose the correct answers for the following :
(04 Marks)
i) Roots of $y^{\prime \prime}-6 y^{\prime}+13 y=0$ are,
A) $2 \pm 3 \mathrm{i}$
B) $2 \pm \mathrm{i}$
C) $3 \pm \mathrm{i}$
D) $3 \pm 2 \mathrm{i}$
ii) The value of $\frac{1}{D}(f(x))$ is,
A) $f^{\prime}(x)$
B) $\frac{1}{f^{\prime}(\mathrm{x})}$
C) $\int \frac{1}{f(x)} d x$
D) $\int f(x) d x$
iii) The complementary function for the differential equation, $y^{\prime \prime}+2 y^{\prime}+y=\cosh x$ is,
A) $\left(c_{1}+c_{2} x\right) e^{-x}$
B) $c_{1} e^{-x}+c_{2} e^{x}$
C) $\left(c_{1}+c_{2} x\right) e^{x}$
D) $\left(c_{1}+c_{2}\right) e^{-x}$
iv) The particular integral of $\left(D^{2}-2 D+4\right) y=e^{x} \cos x$ is,
A) $e^{x} \sin x$
B) $\frac{e^{x} \cos x}{2}$
C) $\frac{e^{x} \sin x}{2}$
D) None of these
b. Solve $\left(4 D^{4}-4 D^{3}-23 D^{2}+12 D+36\right) y=0$ where $D=\frac{d}{d x}$.
(05 Marks)
c. Solve : $\left(D^{2}-2 D+5\right) y=e^{2 x} \sin x$.
(05 Marks)
d. Solve : $\frac{d x}{d t}-2 y=\cos 2 t, \frac{d y}{d t}+2 x=\sin 2 t$ given that $x=1, y=0$ at $t=0$.
(06 Marks)
3 a. Choose the correct answers for the following :
(04 Marks)
i) By the method of variation of parameters, the value of W is called,
A) the Demorgan's function
B) Euler's function
C) Wronskian of the function
D) None of these
ii) In $x^{2} y^{\prime \prime}-x y^{\prime}+y=x^{2} \log x$ if $x=e^{t}$ then we get for $x^{2} y^{\prime \prime}$ as,
A) $(D-1) y$
B) $D(D-1) y$
C) $D(D+1) y$
D) $D(D+2) y$
iii) To transform $(a x+b)^{2} y^{\prime \prime}+K_{1}(a x+b) y^{\prime}+K_{2} y=\phi(x)$ into Legendre's linear equation we put $(a x+b)=$ \qquad
A) e^{-1}
B) $1+e^{t}$
C) $\frac{1}{e^{-t}}$
D) $1-\mathrm{e}$
iv) Frobenius series method of second order linear differential equation is of the form,
A) $x^{m} \sum_{r=0}^{\infty} a_{r} x^{r}$
B) $\sum_{\mathrm{r}=0}^{\infty} \mathrm{a}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}$
C) $\sum_{\mathrm{r}=0}^{\infty} \mathrm{a}_{\mathrm{r}} \mathrm{x}^{\mathrm{m}-\mathrm{r}}$
D) None of these
b. Solve $\left(D^{2}+1\right) y=\operatorname{cosec} x \cot x$ by the method of variation of parameters.
(05 Marks)
c. Solve: $x^{2} y^{\prime \prime}+x y^{\prime}+9 y=3 x^{2}+\sin (3 \log x)$.
(05 Marks)
d. Obtain the series solution of the equation, $\frac{d^{2} y}{d x^{2}}+x y=0$.
(06 Marks)
4 a. Choose the correct answers for the following :
(04 Marks)
i) Form the partial differential equation by eliminating a and b from the relation $z=(x+a)(y+b)$ is,
A) $\mathrm{z}=\mathrm{pq}$
B) $\mathrm{z}=\mathrm{p}+\mathrm{q}$
C) $z=1+p$
D) $\mathrm{z}=1+\mathrm{q}$
ii) The solution of $u_{x x}=x+y$ is $u=$ \qquad .
A) $\frac{x^{3}}{6}+\frac{x^{2} y}{2}+x f(y)+g(y)$
B) $\frac{x^{3}}{4}+\frac{x^{2} y^{2}}{2}+y f(x)+g(y)$
C) $\frac{x y}{3}+\frac{x y}{4}+y f(y)+g(x)$
D) None of these
iii) The auxiliary equations of Lagrange's linear equation, $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ are,
A) $\frac{d x}{P}=\frac{d y}{q}=\frac{d z}{R}$
B) $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$
C) $\frac{d x}{P}=\frac{-d y}{Q}=\frac{d z}{R}$
D) $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$
iv) In the method of separation of variables to solve $u_{x}=2 u_{t}+u$, the trial solution is $\mathrm{u}=$ \qquad -.
A) $X(x) Y(y)$
B) $\mathrm{X}+\mathrm{Y}$
C) $Z=X^{2}+Y^{2}$
D) $\mathrm{X}(\mathrm{x}) \mathrm{T}(\mathrm{t})$
b. Solve $\frac{\partial^{2} z}{\partial x^{2}}+z=0$ given that when $x=0, z=e^{y}$ and $\frac{\partial z}{\partial x}=1$.
(05 Marks)
c. Solve : $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$.
(05 Marks)
d. Solve by the method of separation of variables $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$ (06 Marks)

PART - B

5 a. Choose the correct answers for the following :
(04 Marks)
i) The value of $\int_{0}^{1} \int_{0}^{6} x y d x d y$ is \qquad
A) 6
B) 7
C) 8
D) 9
ii) The integral $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}(x+y) d y d x$ after changing the order of integration is \qquad ,
A) $\int_{0}^{2} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x d y$
B) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x d y$
C) $\int_{0}^{1} \int_{0}^{\sqrt{1+y^{2}}}(x+y) d x d y$
D) None of these
iii) The value of $\int_{0}^{\infty} \mathrm{e}^{-x^{2}} d x$ is \qquad
A) $\pi \sqrt{2}$
B) $2 \sqrt{\pi}$
C) $\sqrt{2 \pi}$
D) $\sqrt{\pi} / 2$
iv) In terms of Beta function $\int_{0}^{\frac{\pi}{2}} \sin ^{7} \theta \sqrt{\cos \theta} \mathrm{~d} \theta=$ \qquad
A) $\beta\left(4, \frac{3}{4}\right)$
B) $\frac{1}{2} \beta\left(4, \frac{3}{4}\right)$
C) $\beta\left(2, \frac{3}{2}\right)$
D) $\frac{1}{2} \beta\left(2, \frac{3}{2}\right)$
b. Evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{\frac{-x^{2}}{y}} d y d x$ by changing the order of integration.
(05 Marks)
c. Evaluate $\int_{0}^{a} \int_{0}^{x+y} \int_{0}^{x+y} e^{x+y+z} d z d y d x$.
(05 Marks)
d. Express the integral $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of beta functions and hence evaluate $\int_{0}^{1} x^{5}\left(1-x^{3}\right)^{10} d x$.
(06 Marks)
6 a. Choose the correct answers for the following :
(04 Marks)
i) If $\int_{C} \vec{F} \cdot d \vec{r}=0$ then \vec{F} is called,
A) Rotational
B) Solenoidal
C) Irrotational
D) Dependent
ii) If $f=\left(5 x y-6 x^{2}\right) i+(2 y-4 x) j$ then $\int f$.dr where C is the curve $y=x^{3}$ from the points $(1,1)$ to $(2,8)$ is,
A) 35
B) -35
C) $3 x+4 y$
D) None of these
iii) In Green's theorem in the plane $\iint_{A}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$ is \qquad
A) $\iint_{C}(M d x-N d y)$
B) $\int_{C}(M d x) \times(N d y)$
C) $\int_{C}(N d x-M d y)$
D) $\int_{C}(M d x+N d y)$
iv) If C be a simple closed curve in space and S be the open surface, f be the vector field then $\int_{C} f \cdot d v=$
A) $\int_{\mathrm{S}}($ curlf $) \cdot \mathrm{nds}$
B) $\int_{C}(\nabla \times f) \cdot d s$
C) $\int_{\mathrm{s}}\left(\nabla^{2} \mathrm{f}\right) \cdot \mathrm{nds}$
D) $\int_{C}(\nabla \cdot f) \cdot n d s$
b. If $f=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} k$ evaluate $\int_{C} f \cdot d r$ from $(0,0,0)$ to $(1,1,1)$ along the curve C given by $x=t, y=t^{2}, z=t^{3}$.
c. Verify Green's theorem for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve made up of the line $y=x$ and the parabola $y=x^{2}$.
(05 Marks)
d. If $\vec{F}=2 x y i+y z^{2} j+x z k$ and S is the rectangular parallelopiped bounded by $x=0, y=0$, $z=0, x=2, y=1, z=3$ evaluate $\iint_{S} \vec{F} \cdot \hat{n} d s$.
(06 Marks)

7 a. Choose the correct answers for the following :
i) $\quad \mathrm{L}\{\sinh \mathrm{at}\}=$ \qquad
A) $\frac{a}{s^{2}+a^{2}}$
B) $\frac{s}{s^{2}-a^{2}}$
C) $\frac{a}{s^{2}-a^{2}}$
D) $\frac{s}{s^{2}+a^{2}}$
ii) $\quad \mathrm{L}\left\{\mathrm{t}^{2} \mathrm{e}^{-\mathrm{at}}\right\}=$ \qquad
A) $\frac{1}{(s+a)^{3}}$
B) $\frac{2}{(s+a)^{2}}$
C) $\frac{3}{(s+a)^{3}}$
D) $\frac{2}{(s+a)^{3}}$
iii) Transform of unit function $\mathrm{L}\{\mathrm{u}(\mathrm{t}-\mathrm{a})\}=$ \qquad
A) $\frac{e^{a s}}{s}$
B) $\frac{e^{-a s}}{s^{2}}$
C) $\frac{e^{-a s}}{s}$
D) $\frac{e^{a s}}{s^{2}}$
iv) $\mathrm{L}[\delta(\mathrm{t}-\mathrm{a})]$ is equal to,
A) 0
B) -1
C) $e^{-a s}$
D) $e^{a s}$
b. Find $\left[\frac{1-\cos 3 t}{t}\right]$.
c. Find $L\{f(t)\}$ where $f(t)=\left\{\begin{array}{cc}3 \mathrm{t}, & 0<\mathrm{t}<2 \\ 6, & 2<\mathrm{t}<4\end{array}\right.$ where the period is 4 .
(05 Marks)
d. Express $f(t)$ in terms of unit step function and hence find $L\{f(t)\}$ given that $f(t)=\left\{\begin{array}{lc}t^{2}, & 0<t \leq 2 \\ 4 t, & t>2\end{array}\right.$.
(06 Marks)

8 a. Choose the correct answers for the following
(04 Marks)
i) $\quad L^{-1}\left\{\frac{\mathrm{~s}}{\mathrm{~s}^{2}-16}\right\}=$ \qquad
A) $\cosh 4 t$
B) $\sinh 4 t$
C) $\frac{1}{4} \cos 4 \mathrm{t}$
D) None of these
ii) $\quad L^{-1}\left\{\frac{s+1}{s^{2}+6 s+9}\right\}$ \qquad
A) $\mathrm{e}^{3 t}(1+2 \mathrm{t})$
B) $e^{-3 t}(1-2 t)$
C) $e^{-3 t}(1+2 t)$
D) $e^{-3 t}(1+t)$
iii) $\quad \mathrm{L}^{-1}\left\{\cot ^{-1}\left(\frac{\mathrm{~s}}{\mathrm{a}}\right)\right\}=$ $=\square$
A) $\frac{\sin t}{t}$
B) $\frac{\sinh a t}{t}$
C) $\frac{\sin a t}{t}$
D) $\frac{\sinh t}{t}$
iv) $\quad L^{-1}[\overline{\mathrm{f}}(\mathrm{s}) \cdot \overline{\mathrm{g}}(\mathrm{s})]=$ \qquad
A) $f(t) \cdot g(t)$
B) $\int_{0}^{t} f(u) g(t-u) d u$
C) $\int_{0}^{t} f(u) g(u) d u$
D) None of these
b. Find $\mathrm{L}^{-1}\left[\frac{4 \mathrm{~s}+5}{(\mathrm{~s}+1)^{2}(\mathrm{~s}+2)}\right]$.
(05 Marks)
c. Find $\mathrm{L}^{-1}\left[\frac{\mathrm{~s}}{\left(\mathrm{~s}^{2}+\mathrm{a}^{2}\right)^{2}}\right]$ using convolution theorem.
(05 Marks)
d. Solve $y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)=e^{-t}$ with $y(0)=0$ and $y^{\prime}(0)=0$ using Laplace transform method.
(06 Marks)

